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a  b  s  t  r  a  c  t

The  genera  of  Mallotus  and  Phyllanthus  contain  several  species  that  are  commonly  used  as  traditional
medicines  in  oriental  countries.  Some  species  show  interesting  pharmaceutical  activities,  such  as  an
antioxidant  activity.  To  produce  clinically  useful  medicines  or food  supplements  (nutraceuticals)  from
these  herbs,  the  species  should  be identified  and  a thorough  quality  control  should  be  implemented.
Nowadays,  the  integration  of  chromatographic  and  chemometric  approaches  allows  a  high-throughput
identification  and  activity  prediction  of  medicinal  plants.  In this  study,  Principal  Component  Analysis
(PCA)  and  Hierarchical  Cluster  Analysis  (HCA)  were  applied  and  compared  to distinguish  Mallotus  and
Phyllanthus  species.  Moreover,  peaks  from  their  chromatographic  fingerprints,  which  were  responsible
for their  antioxidant  activity  were  assigned.  For  the  latter  purpose,  the  relevant  information  was  extracted
from the  chromatographic  fingerprints  using  linear  multivariate  calibration  techniques,  i.e.,  Partial  Least

Squares  (PLS)  and  Orthogonal  Projections  to Latent  Structures  (O-PLS).  Results  reveal  that  exploratory
analysis  using  PCA  shows  somewhat  diverging  clustering  tendencies  between  Mallotus  and  Phyllanthus
samples  than  HCA.  However,  both  approaches  mainly  confirm  each  other.  Concerning  the  multivariate
calibration  techniques,  both  PLS  and  O-PLS  models  demonstrate  good  predictive  abilities.  By compar-
ing  the  regression  coefficients  of  the  models  with  the chromatographic  fingerprints,  the peaks  that  are
potentially  responsible  for the  antioxidant  activity  of  the  extracts  could  be  confirmed.
. Introduction

Herbal medicines have been used by many people around the
orld for thousands of years. Unfortunately, their quality, safety,

nd efficacy are not always sufficiently evaluated [1,2]. Because of
heir complex composition, the development of a suitable analyt-
cal procedure to separate all or as many compounds as possible
rom such herbal sample is a challenging task. Furthermore, the
oncentrations of the herbal components can vary significantly

epending on the cultivation conditions of the plant, the drying
rocess, and the harvest season [2].  Some researchers only use

nformation from one or a limited number of compounds, the

� This paper belongs to the Special Issue Chemometrics in Chromatography, edited
y  Pedro Araujo and Bjørn Grung.
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so-called markers, to evaluate the quality of herbal medicines.
However, it seems doubtful that only focusing on some compounds
will describe and evaluate the complexity of the herbal sample
properly.

The World Health Organization (WHO) has accepted chro-
matographic fingerprint analysis as a strategy for the assessment
of herbal medicines [3].  A chromatographic fingerprint can be
obtained by, for example, reversed-phase high-performance liq-
uid chromatography (RPLC), and typifies the complete composition
of a herbal medicine. A fingerprint represents a chromatographic
profile in which the detectable chemical constituents are sepa-
rated as much as possible. The obtained fingerprints can be used
as a unique identification tool to evaluate the authenticity of a
herbal sample, the quality and assurance of the consistency, and

the stability of a herbal medicine. Nowadays, the combination of
(hyphenated) chromatographic instruments and chemometrical
approaches for data (pre-) treatment allows a fast investigation
of herbal samples [4–11]. Moreover, chemometric treatment of

dx.doi.org/10.1016/j.jchromb.2012.06.025
http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:yvanvdh@vub.ac.be
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he chromatographic fingerprints also allows modeling and pre-
icting pharmacological activities (e.g. antioxidant and cytotoxic
ctivities) and/or indicating peaks potentially responsible for the
odeled activities [2,4,12–16].
The Mallotus and Phyllanthus genera, belonging to the fam-

ly of the Euphorbiaceae,  are widely distributed in most tropical
nd sub-tropical countries. They have been extensively used in
olk medicine in India, China, Vietnam and other countries for
housands of years for the treatment of a broad spectrum of dis-
ases. For instance, the genus Mallotus has been used for the
reatment of chronic hepatitis and enteritis [17,18], while the
enus Phyllanthus has been used for kidney, urinary bladder, and
ntestinal infections, and for diabetes [19,20].  Recently, many
tudies were performed concerning the chemical components of
allotus and Phyllanthus species and several pharmacologically

ctive constituents were determined [12,21–25].  Cytotoxic (Mal-
otus apelta [22]), antimicrobial (Mallotus peltalus [22], Phyllanthus
mblica [24]), anti-inflammatory (Mallotus peltalus [22], Mallotus
podocarpys [22]), and antioxidant activities (Mallotus metcalfianus
23], Phyllanthus emblica [21], Phyllanthus niruri [25]) have been
eported for both genera.

In a parallel study [26], RPLC fingerprints of 36 samples, i.e.,
0 Mallotus and 26 Phyllanthus samples, were developed. Then,
nsupervised and supervised classification methods were used to
lassify the Mallotus and Phyllanthus samples according to genera
Mallotus and Phyllanthus) and species (Mallotus apelta,  Mallotus
aniculatus, Phyllanthus emblica, Phyllanthus reticulatus,  Phyllan-
hus urinaria L., Phyllanthus amarus). As unsupervised techniques,
rincipal Component Analysis (PCA) and Hierarchical Cluster Anal-
sis (HCA) were evaluated, while as supervised classification
echniques, Linear Discriminant Analysis, Quadratic Discriminant
nalysis, and Classification and Regression Trees, were compared.
he methods were applied to classify the samples in two classes (i.e.
he two genera) or in 6 classes (i.e. the 6 species). Results showed
he applicability of both unsupervised and supervised methods to
iscriminate between the samples.

The goal of this study was to model the antioxidant activity of
he 36 Mallotus and Phyllantus samples, originating from differ-
nt genera, species, origins and/or collection times, as a function
f their chromatographic fingerprints. The goal of this modeling
s not to use the model to predict the activity of future samples
ut to indicate peaks potentially responsible for the antioxidant
ctivity [16]. The antioxidant activity of the herbal extracts was
etermined with a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical
cavenging activity test and expressed in term of the median inhibi-
ion concentration (IC50). First, an unsupervised data analysis using
CA and HCA was performed to verify whether the antioxidant
amples could be distinguished from the less or non-active sam-
les. Then, the antioxidant activity was modeled as a function of
he earlier developed HPLC fingerprints [26] using the multivariate
alibration techniques Partial Least Squares (PLS) [27] and Orthog-
nal Projections to Latent Structures (O-PLS) [28]. The regression
oefficients of the resulting models were evaluated to indicate the
eaks possibly responsible for the antioxidant activity.

. Theory

.1. Data preprocessing

Prior to data analysis, the chromatographic fingerprints are

rganized in an n × p data matrix X, where the n objects (herbal
amples) constitute the rows and the p variables (time points) the
olumns. In each cell of the matrix, the detector signal intensity at

 given time point is presented.
gr. B 910 (2012) 114– 121 115

The results of the data analysis are influenced by the applied data
preprocessing method. In this study, different methods to pretreat
the data, i.e. column centering, normalization followed by column
centering, and standard normal variate (SNV) followed by column
centering, were applied and compared [4,27,29,30].

Column centering removes the column mean from each cor-
responding column element. Normalization of the chromatograms
scales the rows to a constant total by dividing each row by its corre-
sponding norm. SNV corresponds to row centering, followed by row
scaling, where row centering removes the row mean from each cor-
responding row element and row scaling divides each row element
by its corresponding row standard deviation.

2.2. Unsupervised exploratory data analysis

Unsupervised data analysis only uses information contained in
the data matrix X, i.e. the fingerprints, and does not use the infor-
mation contained in the response vector y.

2.2.1. Principal Component Analysis
Principal Component Analysis (PCA) reduces the number of vari-

ables and visualizes the information included in the n × p data
matrix X [27,30]. PCA makes linear combinations of the original
variables, thus creating the so-called latent variables or principal
components (PCs), in such a way that the latter describe the largest
possible remaining variation in X and are orthogonal. The projec-
tion of an object on a PC is called a score on this PC, while the
projection of each original variable to the PC is called a loading.
A score plot represents the scores on two PC’s and shows informa-
tion regarding the (dis)similarity of the objects, while a loading plot
provides information on the contribution of the original variables
to the considered PC’s.

2.2.2. Hierarchical Cluster Analysis
Hierarchical Cluster Analysis (HCA) is a clustering method

applied to reveal the underlying structure of objects through an
iterative process that associates (agglomerative method) or disso-
ciates (divisive method) the data set object by object, and that is
stopped when all objects have been processed [30,31].

A divisive method starts with all objects in one cluster and
divides them into subsets, continuously making smaller clusters
until all objects are individually in a cluster [30,32].  An agglom-
erative procedure, on the other hand, starts with each object in a
separate cluster and combines the clusters sequentially, reducing
the number of clusters at each step until all objects belong to only
one cluster [30]. The hierarchical clustering process can be repre-
sented as a tree or dendrogram, where each step in the clustering
process is illustrated by a joint of clusters.

In this study, an agglomerative HCA was  selected to visualize the
data contained in the fingerprint matrix X and give insight in the
clustering tendency of the data. Several (dis)similarity measures
to cluster the objects can be used, e.g. Euclidean distance, Maha-
lanobis distance, Pearson correlation distance, and Spearman’s rank
correlation coefficient [30].

In this work, the Euclidean distance and the Pearson correlation
distance, which is calculated as “1 − Pearson correlation coefficient
r”, were evaluated as distance measures [30]. Consider x (x1, x2, . . .,
xn) and z (z1, z2, . . .,  zn) as two sets of n measurements/variables
(fingerprints) with means (averages) x̄  and z̄.  The Euclidean dis-
tance (ED) between x and z is calculated as follows

√√ n∑

ED =

√√
i=1

(xi − zi)
2 (1)

where xi and zi are the ith elements of x and z.
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The Pearson correlation coefficient r is estimated as

(x, z) = cov(x, z)
sxsz

=
∑n

i=1(xi − x̄)(zi − z̄)√∑n
i=1(xi − x̄)2∑n

i=1(zi − z̄)2
(2)

here cov(x,z) is the covariance of the variables x and z, and sx and
z are the standard deviations of x and z.

There are several linkage methods using different criteria to
ecide which individual objects should be merged, i.e. single link-
ge, complete linkage, average linkage, weighted average linkage,
entroid’s method, median’s method, and Ward’s method. In this
tudy, all linkage methods were applied and evaluated. In all
ethods, in a first step, the two objects, o1 and o2, representing fin-

erprints, that are most similar (with the smallest distance between
hem, Do1o2 ) are clustered to a new combined object, o*, which

eans that the two objects with the smallest distance between
hem, Do1o2 , need to be found. The distance of the new combined
bject o* to the remaining objects i, Dio∗, or to another cluster in a
urther stage of the iterative procedure, Di∗o∗, then can be obtained
n different ways.

Single linkage, also called nearest neighbor linkage, then uses
he smallest distance between the two clustered objects, o1 and
2, and the other remaining objects i, i.e. Dio∗ = min(Dio1

, Dio2
). In

ase of another cluster i*, the distance is considered to be equal to
he smallest distance between two individual objects, of which one
elongs to cluster o* and one to cluster i*.

Complete linkage follows the opposite approach of single
inkage. It uses the largest distance between the two clustered
bjects, o1 and o2, and the other remaining objects i, i.e. Dio∗ =
ax(Dio1

, Dio2
). In case of another cluster i*, the distance is con-

idered to be equal to the largest distance between two individual
bjects, of which one belongs to cluster o* and one to cluster i*.

In average linkage, the average distance between the two  clus-
ered objects, o1 and o2, and the other remaining objects i, i.e.
io∗ = (Dio1

+ Dio2
)/2, is then used. In case of another cluster i*, the

istance is considered to be equal to the average distance between
oth clusters. Both unweighted and weighted average linkage pro-
edures exist [30].

The centroid’s and the median’s methods use the distance
etween the centroids and weighted centroids of the two clustered
bjects, o1 and o2, and the other remaining objects i or cluster i*,
espectively.

Another approach is Ward’s method, which uses an a posteriori
eterogeneity criterion. This criterion is defined as the sum of the
quared distances of each member of a cluster to the centroid of
hat cluster. Elements or clusters are joined with as criterion that
he sum of heterogeneities of all clusters should increase as little
s possible.

.3. Supervised data analysis: multivariate calibration techniques

Linear multivariate calibration techniques try to relate the infor-
ation contained in the n × p data matrix X to an n × 1 response

ector y, with y being a continuous response. For this purpose,
everal techniques have been proposed [28,30,33].

Generally, the relationship between X and y can be described as
ollows:

 = Xb + e (3)

here b represents a p × 1 vector of regression coefficients and e
n n × 1 residual vector. In this study, two linear multivariate cali-

ration techniques, i.e. Partial Least Squares (PLS) and Orthogonal
rojections to Latent Structures (O-PLS), are used for modeling and
heir regression coefficients were studied in order to indicate peaks
ossibly responsible for the antioxidant activity.
gr. B 910 (2012) 114– 121

2.3.1. Partial Least Squares
Partial Least Squares (PLS) [27,30] is a latent-variable technique

that maximizes the covariance between X and y. The PLS model can
be presented as follows

X = TPT + E (4)

y = TPTb + f = Tq + f (5)

b = Pq (6)

where T represents the n × n score matrix for X and y, P the p × n
loading matrix of X on T, E the n × p residual matrix of X, b the p × 1
vector of regression coefficients, q the n × 1 loading vector of y on
T, and f the n × 1 residual vector of y. The regression coefficients b
can be used to evaluate the contribution of the original variables to
the final model [2,4,13–16].

In  our study, the optimal model complexity was determined by
a leave-one-out cross-validation procedure (LOO-CV). During LOO-
CV each object is left out once and the model is built using the
remaining objects. The root mean squared error of cross-validation
(RMSECV) (Eq. (7))  is then calculated for models with different
complexities [30].

RMSECV (f ) =

√√√√ N∑
i=1

(ŷcv,i − yi)
2

N
(7)

where f is the model complexity, N the number of calibration sam-
ples, yi the measured response of the ith sample, and ŷcv,i the
response for the ith sample predicted from the calibration model
obtained without the ith sample. The optimal model complexity
corresponds to the number of latent factors resulting in the (nearly)
lowest RMSECV.

2.3.2. Orthogonal Projections to Latent Structures
Orthogonal Projections to Latent Structures (O-PLS) [28] remove

the variation in X that is not correlated to y. This is done by sub-
tracting PLS components, orthogonal to y, from the original data
matrix X. Thus, the original data is split into two data sets, i.e. one
that contains the information relevant to y and another with the
information orthogonal to y.

An O-PLS model can be written as follows

X = TPT + TorthPT
orth + E (8)

where T represents the orthonormal n × n score matrix for X and y,
P the orthonormal p × n loading matrix representing the regression
coefficients of X on T, Torth the orthogonal n × n score matrix for X
and y, Porth its corresponding orthogonal p × n loading matrix, and
E the n × p residual matrix of X. y and b are calculated according
to Eqs. (5) and (6),  respectively. Again, the regression coefficients
b (Eq. (6))  can be used to evaluate the contribution of the original
variables to the final model [2,4,12,13,16].

Removing the orthogonal information from the original data set
leads to a reduction of the number of PLS components in the O-PLS
model, i.e. only one PLS component is used. This allows an improved
interpretability of the regression coefficients [28].

3. Experimental

3.1. Herbs and preparation of the extracts

Ten Mallotus and twenty-six Phyllanthus samples, from 6 dif-

ferent species, were collected in different Vietnamese regions
(Table 1). To protect the forests, only the leaves were collected.
The samples were authenticated by Professor Nguyen Nghia Thin
(Hanoi National University, Vietnam).
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Table 1
The Mallotus and Phyllanthus samples with their species name, collection time, origin, and the IC50. / = not specified and CI = confidence interval. The highly antioxidant
samples  are marked in bold.

Sample Species Collection time Origin Average IC50 (95%CI)

1 Mallotus apelta August, 2009 Van Ban-Lao Cai 72.66 (51.36–101.20)
2 Phyllanthus emblica August, 2009 Van Ban-Lao Cai 9.90 (7.61–13.89)
3  Phyllanthus emblica November, 2009 Dong Dang-Lang Son 9.55 (7.54–12.58)
4  Mallotus apelta November, 2009 Tam Dao-Vinh Phuc 74.59 (54.91–102.40)
5  Mallotus apelta November, 2009 Dong Dang-Lang Son 98.42 (65.89–137.60)
6  Mallotus paniculatus December, 2009 Dong Van-Ha Giang 37.31 (27.84–55.08)
7 Phyllanthus emblica December, 2009 Dong Van-Ha Giang 8.57 (6.95–10.57)
8 Mallotus apelta December, 2009 Ham Yen-Tuyen Quang 110.00 (/)
9  Phyllanthus reticulatus February, 2010 Nghia Trai-Hung Yen 28.06 (19.25–38.18)
10  Phyllanthus urinaria L. February, 2010 Nghia Trai-Hung Yen 9.75 (7.36–12.43)
11  Phyllanthus amarus February, 2010 Nghia Trai-Hung Yen 99.32 (29.23–142.50)
12  Phyllanthus amarus March, 2010 Van Dien-Hanoi 13.74 (9.64–19.08)
13 Mallotus paniculatus March, 2010 Huong Hoa-Quang Tri 38.87 (31.07–52.68)
14  Phyllanthus reticulatus March, 2010 Van Dien-Hanoi 29.70 (21.74–45.66)
15 Phyllanthus emblica March, 2010 Huong Hoa-Quang Tri 10.92 (7.61–14.79)
16  Phyllanthus urinaria L. March, 2010 Van Dien-Hanoi 8.45 (6.03–11.46)
17 Mallotus paniculatus April, 2010 Me Linh-Vinh Phuc 35.76 (27.30–48.59)
18  Phyllanthus reticulatus April, 2010 Me  Linh-Vinh Phuc 13.42 (10.51–17.28)
19  Phyllanthus amarus April, 2010 Me  Linh-Vinh Phuc 13.12 (10.77–15.87)
20  Phyllanthus reticulatus April, 2010 Lan Ong-Hanoi 22.18 (13.47–33.60)
21  Phyllanthus emblica April, 2010 Me  Linh-Vinh Phuc 8.75 (6.99–10.85)
22 Phyllanthus amarus April, 2010 Lan Ong-Hanoi 14.33 (9.90–20.69)
23  Phyllanthus urinaria L. April, 2010 Me  Linh-Vinh Phuc 8.83 (7.25–10.70)
24 Phyllanthus urinaria L. April, 2010 Lan Ong-Hanoi 8.56 (6.95–10.49
25  Phyllanthus reticulatus May, 2010 Ninh Hiep-Hanoi 23.49 (15.23–33.48)
26  Phyllanthus reticulatus May, 2010 Dong Anh-Hanoi 27.31 (13.42–42.45)
27  Phyllanthus amarus May, 2010 Que Vo-Bac Ninh 15.51 (11.14–21.22)
28  Phyllanthus emblica May, 2010 Dong Anh-Hanoi 10.26 (8.32–12.73)
29 Phyllanthus amarus May, 2010 Dong Anh-Hanoi 10.15 (6.91–14.95)
30  Phyllanthus urinaria L. May, 2010 Que Vo-Bac Ninh 17.99 (11.95–19.88)
31 Phyllanthus urinaria L. May, 2010 Ninh Hiep-Hanoi 21.13 (13.71–28.78)
32  Phyllanthus amarus May, 2010 Ninh Hiep-Hanoi 16.12 (11.62–21.39)
33  Phyllanthus urinaria L. May, 2010 Dong Anh-Hanoi 13.60 (8.35–19.86)
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34  Mallotus apelta June, 2010 

35  Mallotus paniculatus June, 2010 

36 Mallotus paniculatus July, 2010 

Extracts were prepared by weighing 10.0 g of sample which
s then extracted with three times 100 mL  methanol in an ultra-
onic bath (Branson Ultrasonic Corporation, Connecticut, USA) at

 temperature between 30 and 45 ◦C during 1 h. Afterwards, the
xtract was filtered through a 240 nm pore size filter paper (What-
an, Hanoi, Vietnam) and evaporated at reduced pressure (60 Pa)

nd elevated temperature (40 ◦C). The obtained crude extract was
ivided into 3 fractions, i.e. one for the DPPH radical scavenging
ssay, one for the HPLC analysis, and one as a library sample for
eference purposes in Vietnam.

.2. HPLC

.2.1. Equipment, chemicals and reagents
The experiments were performed on a Shimadzu Prominence

PLC system (Shimadzu, Tokyo, Japan), equipped with an autosam-
ler, a vacuum degasser, a quaternary pump, a column oven and a
hoto diode array detector. All data were acquired and processed
y LC solution software (Shimadzu). Two coupled ChromolithTM

erformance RP-18e columns (each 100 mm × 4.6 mm  I.D.) with a
hromolithTM Performance RP-18e guard column (5 mm × 4.6 mm

.D.) were used as stationary phase. HPLC grade acetonitrile
ACN) (Fisher Scientific, Leicestershire, UK), trifluoroacetic acid
TFA) (Sigma–Aldrich, Steinheim, Germany) and ultra pure water,
btained from the Arium® pro UV Ultrapure Water system (Sar-

orius Stedim Biotech, Aubagne, France), were used to prepare
he mobile phases. All solvents were degassed for 15 min  on an
ltrasonic bath (Branson Ultrasonic Corporation, Connecticut, USA)
rior to HPLC analysis.
Pa Co-Hoa Binh 105.56 (70.08–151.70)
VQG-Pumat 31.47 (23.72–42.63)
Cuc phuong-Ninh Binh 36.70 (28.85–49.01)

3.2.2. Sample preparation
The development of the sample preparation method was  based

on the methodology described in [34]. To prepare the samples for
HPLC analysis, 50.0 mg  crude extract was weighed and diluted to
volume with methanol in a 2.0 mL volumetric flask. Then, the solu-
tion was mixed on a shaking bath (Edmund Bühler, Hechingen,
Germany) during 15 min  at 400 rpm. This was followed by filtra-
tion through a filter (Schleicher & Schuell, Dassel, Germany) with a
diameter of 125 mm and a pore size smaller than 2 �m and con-
secutively by filtration through a 25 mm  syringe filter having a
polypropylene membrane with 0.2 �m pore size (VWR Interna-
tional, Leuven, Belgium).

3.2.3. Chromatographic conditions
The development of the chromatographic fingerprints was

based on the methodology described in [34]. The mobile phase con-
sisted of (A) 0.05%TFA in ACN, and (B) 0.05%TFA in ultra pure water.
Gradient elution was  applied for 60 min. The gradient was 5–20% A
in 0–20 min, 20–95% A in 20–50 min  and 95% A during 50–60 min.
The column temperature was  25 ◦C, the flow rate 1.0 mL  min−1, the
injection volume 10 �L, and the detection wavelength 254 nm.

3.3. DPPH radical scavenging assay

The antioxidant activity of the samples was  determined using
the DPPH radical scavenging assay. The DPPH radical scavenging

assay [35] measures the capacity of a compound or a sample to
scavenge the stable 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•).
DPPH• has an absorption band at 515 nm, which disappears upon
reduction by an antiradical compound. The assay was carried out
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ig. 1. 60 min chromatographic fingerprints of (a) Mallotus apelta samples (1, 4, 5, 8
2,  3, 7, 15, 21, 28), (d) Phyllanthus reticulatus samples (9, 14, 18, 20, 25, 26), (e) Phy
11,  12, 19, 22, 27, 29, 32). The regression coefficients from PLS and O-PLS models, p

s follows. Stock solutions of samples were prepared at a con-
entration of 2 mg/mL  in HPLC grade methanol (Prolabo, Paris,
rance). Polystyrene flat-bottomed 96-well plates (Nunc MicroW-
ll, Thermo Scientific, USA) were filled with 100 �L methanol.
00 �L sample stock solution was added to the first wells, serial 2-
old dilutions were performed and 100 �L was discarded from the
ast wells. (±)-�-tocopherol (Sigma, Munich, Germany) was  used
s an antiradical control. Blank controls (methanol only) were also
ntroduced. 100 �L freshly prepared solution of DPPH in methanol
50 �g/mL) was  added to each well giving a final DPPH concen-
ration of 25 �g/mL (63.4 �M)  and final concentrations of samples
anging from 1 to 500 �g/mL. Plates were kept in the dark at room
emperature for 20 min. After 20 min, absorbances were read at
15 nm using a SpectraMax 190 Microplate Reader equipped with
he SoftMax Pro software (Molecular Devices, Ismaning, Germany).

 DPPH calibration curve was measured between 0 and 50 �g/mL.
ercentages of remaining DPPH, %DPPHremaining, were calculated as
ollows:

DPPHremaining = Asample

AMeOH blank
× 100 (9)

ith Asample being the absorbance of sample extract and AMeOH blank
eing the absorbance of blank control.

Two independent assays were carried out in duplicate to assess
ntra and inter-day repeatability. For each assay, the percentages of
emaining DPPH are reported as the mean ± standard deviations of
 duplicate values. Using the software GraphPad Prism 4 (GraphPad
oftware, San Diego, CA, USA), the percentages of remaining DPPH
ere plotted against the log10 of the corresponding concentra-

ion. A sigmoidal curve was then fitted on the experimental points
(b) Mallotus paniculatus samples (6, 13, 17, 35, 36), (c) Phyllanthus emblica samples
s urinaria L. samples (10, 16, 23, 24, 30, 31, 33) and (f) Phyllanthus amarus samples
cessed with normalization and column centering, are also given.

allowing determination of the IC50, i.e. the sample concentration
(in �g/mL) that is needed to scavenge half of the DPPH initially
introduced. IC50’s for each assay are reported with their 95% con-
fidence intervals. The final IC50 values are reported as mean and
95% confidence intervals of the two IC50 values obtained for each
independent assay.

3.4. Data analysis

Computations were performed on a PC with an Intel 2.8 GHz
Pentium-IV processor, 512 MB  RAM and running on Microsoft Win-
dows XP and MatlabTM 7.1 (The Mathworks, Natick, MA). All data
(pre)processing methods were performed using m-files written for
MatlabTM 7.1.

4. Results and discussion

4.1. DPPH radical scavenging test

Table 1 presents the 36 Mallotus and Phyllanthus samples with
their species name, collection time, origin, and the DPPH scaveng-
ing activity results given as average IC50 values with their 95%
confidence interval. The lower the average IC50 value is, the higher
the antioxidant activity of the sample.

Except for P. amarus (sample 11), all Phyllanthus samples (2, 3,

7, 9, 10, 12, 14, 15, 16, 18–33) are considered to have a high antiox-
idant activity (average IC50 < 30 �g/mL) with the range of IC50
situated between 8.45 and 29.70 �g/mL. The five M.  paniculatus
samples (6, 13, 17, 35, 36) are considered to have an intermediate
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Table 2
Number of components and RMSECV for the calibration models built with the 60 min
fingerprints and three preprocessing approaches.

Calibration
technique

Preprocessing # of components RMSECV

PLS Column centering 4 20.1
Normalization and
column centering

2 16.5

SNV and column
centering

2 16.8

O-PLS Column centering 1 (3a) 19.7
Normalization and
column centering

1 (1a) 16.1

SNV and column
centering

1 (1a) 16.4
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     Phyllanthus urinaria L.
     Phyllanthus emblica
     Phyllanthus reticulatus 
     Phyllanthus amarus

(a)

(b)

(c)

Fig. 2. PC1–PC2 score plot for the 60 min fingerprints of the 36 Mallotus and Phyllan-
thus samples (pretreatment: standard normal variate and column centering). Three

dant and non-antioxidant samples along PC2 is the same as that
between Mallotus and Phyllanthus samples. Three groups of species,
i.e. M. apelta (samples 1, 4, 5, 8, 34), M.  paniculatus (samples 6, 17, 35,
36) and P. reticulatus (samples 9, 14, 20, 25, 26) are clustered nicely,
a For O-PLS, the number of removed orthogonal components is given between
rackets.

ntioxidant activity (30 �g/mL < average IC50 < 50 �g/mL) with the
C50 range situated between 31.47 and 38.87 �g/mL. The five M.
pelta samples (1, 4, 5, 8, 34), on the other hand, do not possess any
ntioxidant activity (average IC50 > 70 �g/mL) with an IC50 range
etween 72.66 and 110.00 �g/mL. The IC50 values of the Mallotus
nd Phyllanthus samples range between 31.47–110.00 �g/mL and
.45–99.32 �g/mL, respectively.

.2. HPLC fingerprints

In an earlier study [26], 60 min  HPLC fingerprints have been
eveloped. The data consists of two genera comprising a total of
ix species. Visual examination of the fingerprints (Fig. 1) reveals
ighly similar chromatographic profiles within each species except

or P. amarus,  where sample 11 seems to have a different profile
han all other samples of that species (Fig. 1f). Additionally, the
rofiles between the species are rather different, thus the chemi-
al constituents differ considerably between the species. Therefore,
ifferent pharmaceutical activities can possibly be attributed to
ifferent species (as seen in Table 1).

.3. Evaluation of antioxidant activity versus fingerprint

.3.1. Data preprocessing
Prior to the modeling, the data was preprocessed. Different pre-

rocessings were evaluated, i.e. column centering, normalization
ollowed by column centering, and standard normal variate (SNV)
ransformation followed by column centering. For the PLS and O-
LS techniques, normalization followed by column centering was
est for this data set (see further, Table 2). For PCA and HCA, SNV fol-

owed by column centering was required (see further, Figs. 2 and 3).
ll results discussed further are from data preprocessed as indi-
ated above.

Aligning the peaks is usually recommended, because of reten-
ion time shifts between chromatograms due to experimental
rror. For this purpose, many so-called warping techniques can be
pplied. In this study, the fingerprints were not aligned, because of
he large diversity in species, which makes it challenging to align
he peaks properly, and because the goal of the study is not predic-
ion of antioxidant activity for new samples but indication of peaks
ossibly responsible for the antioxidant activity. This problem is
tudied and discussed in detail in [16]. Moreover, it is rather diffi-
ult to identify corresponding peaks that should be aligned, since no
ass spectrometry (MS) data was available. Thus, aligning peaks is

ot evident, because peaks representing different components can

e forced to align. The problem (or its absence because anyway the
roper peaks are indicated) of non-alignment of peaks in such sit-
ations was discussed in [16]. Therefore, in this study, it was  also
ecided to treat, model, and interpret the non-aligned fingerprints.
groups of species are distinguished, i.e. containing (a) samples 1, 4, 5, 8, 34, (b) sam-
ples 6, 17, 35, 36, and (c) samples 9, 14, 20, 25, 26. The highly active antioxidant
samples are marked in bold.

4.3.2. Exploratory analysis
Principal Component Analysis (PCA) has been applied to ver-

ify whether groups of samples could be distinguished, occasionally
according to their antioxidant activity or species. The score plot
(Fig. 2) of PC1 (21.59% explained variation) versus PC2 (16.32%
explained variation) was drawn after the above-mentioned pre-
processing. Standard normal variate followed by column centering
was  considered as the best preprocessing. All samples with highly
antioxidant activity (marked in bold) are clustered, i.e. can be dis-
tinguished along PC2. Combining the proximity of samples on the
score plot and previous knowledge of their fingerprint profiles and
species, results in the distinction of the two groups of genera. The
samples belonging to the genus Mallotus (samples 1, 4, 6, 8, 17, 34,
36) are distinguished from those from the genus Phyllanthus (sam-
ples 2, 3, 7, 9, 12, 14, 16, 18, 22, 24, 33) except for M.  paniculatus
(sample 13). The above-mentioned distinction between antioxi-
Fig. 3. HCA dendrogram obtained using Euclidean distance as distance measure
and median’s method as linkage method (pretreatment: standard normal variate
and column centering).
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Table 3
Results from the DPPH radical scavenging assay (IC50) and predictions from the
models built with the 60 min  fingerprints. Preprocessing: normalization and column
centering.

Sample no. IC50 (�g/mL) Predicted IC50 (�g/mL)

PLS O-PLS

2 9.90 6.09 11.48
3 9.55 6.94 7.55
7  8.57 8.16 9.91
9  28.06 26.53 26.05

10  9.75 12.73 8.53
12  13.74 15.82 16.14
14 29.70 25.82 29.26
15 10.92 7.82 13.86
16  8.45 9.23 4.31
18  13.42 15.39 20.45
19  13.12 12.02 12.94
20  22.18 26.76 28.03
21  8.75 6.92 7.11
22  14.33 45.36 45.67
23  8.83 18.56 43.20
24  8.56 15.94 12.58
25 23.49 25.35 31.27
26  27.31 24.45 35.49
27  15.51 13.64 9.54
28  10.26 6.52 9.55
29  10.15 14.35 9.52
30 17.99 19.83 17.29
31  21.13 23.66 28.96
32 16.12 17.88 18.93
20 S. Thiangthum et al. / J. Chr

.e. they are situated in each other proximity. Obviously, sample 13
eems to be outlying. Its (dis)similarity to the other M. paniculatus
amples or to fingerprints from other species can be evaluated in a
imilarity analysis [36]. Sample 18 (P. reticulatus)  is also not clearly
lustered with the other P. reticulatus samples. However, given the
ariability within the fingerprints of P. reticulatus and the arbitrari-
ess of defining the groups on the PCA plot, sample 18 could have
een included in the P. reticulatus group. The fact that the different
pecies are not separated in largely distinct groups is both an indi-
ation and a consequence of the fact that the fingerprints are not
xtremely different.

In order to confirm the clustering results of PCA, the Hierarchical
luster Analysis (HCA) technique also has been utilized. Several dis-
ance measures (i.e. Euclidean distance and the Pearson correlation
oefficient) and linkage methods (i.e. single linkage, complete link-
ge, average linkage, weighted average linkage, centroid’s method,
edian’s method and Ward’s method) were evaluated and com-

ared. When using the Euclidean distance measure and the median
inkage method, after SNV and column centering as preprocessing,
he dendrogram given in Fig. 3 was generated. This dendrogram also
evealed relationships amongst the studied samples. It is clear that
he samples with antioxidant activity can be distinguished, except
or samples 23 (Mallotus urinaria L.) and 26 (P. reticulatus). Secondly,
ample 13, which is a medium active M.  paniculatus sample, is clus-
ered with the highly active Phyllanthus samples. These results are
lready seen with PCA. The Mallotus and Phyllanthus samples can
gain more or less be distinguished, except for M. paniculatus (sam-
le 13), P. urinaria L. (sample 23), P. amarus (sample 11), and P.
eticulatus (sample 26). For samples 13 and 23, this was also seen
rom the PC1–PC2 score plot of Fig. 2. Additionally, on the PC1–PC2
core plot, sample 26 is situated further away from the majority of P.
eticulatus samples and sample 11 is situated at the border between
he Mallotus and Phyllanthus species. Moreover, sample 11 has a low
ntioxidant activity compared to all other Phyllanthus samples. The
act that sample 26 was included in the group of antioxidative P.
eticulatus samples in the PCA plot and not in the cluster analysis is
ot contradictory, because in PCA a subjectively determined cluster

s drawn based on some labeling information, while in the dendro-
ram splits are determined by correlation coefficients. Both plots
rovide complementary information.

.3.3. Linear multivariate calibration
Multivariate calibration models for the antioxidant activity were

stablished using two techniques i.e. PLS and O-PLS, on the data
atrix X consisting of the 36 fingerprints and the response vector

, representing the IC50 test results. No division of the data into a
alibration and a test set was made because the number of samples
s rather small and prediction of the antioxidant activity of new
amples is not the primary goal of this study, but the indication of
eaks potentially responsible for the antioxidant activity is. For PLS,
he optimal model complexity (Aopt) was chosen from a LOO-CV
rocedure and the simplest model with (nearly) the lowest RMSECV
as selected. For O-PLS, a one-component PLS model with Aopt − 1

rthogonal components was built. In Table 2, the number of model
omponents and the RMSECV are presented for both calibration
echniques, applying three preprocessing approaches. The O-PLS

odels after normalization or SNV followed by column centering
ere found to be most simple, i.e. they contain the lowest number

f components. For both PLS and O-PLS, normalization followed to
olumn centering lead to the model with the best predictive ability,
.e. the lowest RMSECV for the whole data set (16.5 and 16.1 �g/mL,
espectively).
To evaluate the model’s ability to predict the antioxidant activ-
ty of the samples, the prediction of their antioxidant activity

as taken into account. Table 3 shows the results of the 25
ighly antioxidant samples (IC50 < 30 �g/mL) for the DPPH radical
33  13.60 26.34 25.21

Mean bias 4.49 5.95

scavenging assay and the predictions from the models after appli-
cation of normalization and column centering as preprocessing
approach. For these highly antioxidant samples, none of the two
models predicted any as being non-active (IC50 > 70 �g/mL). The
PLS model predicted 24 out of 25 highly active samples correctly
as being highly antioxidant. Only sample 22 was  predicted as being
intermediately active (30 �g/mL < IC50 < 50 �g/mL). The mean bias
of these highly antioxidant samples was found to be 4.49 �g/mL.
The O-PLS model predicted 21 highly active samples correctly and
four (22, 23, 25, and 26) incorrectly as intermediately active. For O-
PLS, the mean bias of these highly antioxidant samples was found
to be 5.95 �g/mL. None of the models predicted inactive samples
to have an intermediate or highly antioxidant activity.

4.3.4. Regression coefficients: potentially antioxidant compounds
In order to indicate in the fingerprints those peaks potentially

responsible for the antioxidant activity of the measured samples,
the regression coefficients of the models are examined. Chromato-
graphic fingerprint peaks of potentially antioxidant compounds
correspond to negative regression coefficient peaks (indicated with
an arrow in Fig. 1) as the IC50 test result decreases with increasing
activity. In this study, the fingerprints of each species were com-
pared with the obtained regression coefficients (Fig. 1) from both
models i.e., PLS and O-PLS. For this case study, the regression plots
from the two models showed similar coefficient profiles.

The major negative coefficient peaks corresponding to the
potentially antioxidant compounds are found in four peaks (at
retention times of about 15.0, 17.0, 23.0 (splitted coefficient
peaks), and 27.0 min). The antioxidant samples have no major
peaks present at retention times corresponding to the positive
coefficient peaks in the regression plots. In Fig. 1b (M.  paniculatus
samples), none of the negative coefficient peaks match major com-

pounds present in these fingerprints, except for sample 13. This
sample has an antioxidant activity and was already found atypical
from the PCA score plot and the HCA dendrogram. In Fig. 1c–f, all
samples have a high antioxidant activity and the major negative
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oefficients correspond to substance peaks seen in the fingerprints.
hese peaks are probably responsible for most antioxidant activity.
n a next step, the indicated relevant peaks should be isolated, iden-
ified, and investigated using structure-elucidation techniques.

ore information related to these steps can be found in [16].

. Conclusions

HPLC fingerprints of Mallotus and Phyllanthus samples were
ombined with data-handling techniques in order to model the
ntioxidant activity and indicate peaks possibly responsible for this
ctivity.

In a first step, exploratory analysis using PCA and HCA was
erformed to verify the data structure, e.g. to see whether the
ntioxidant samples could be distinguished from the less or non-
ctive samples, or whether atypical fingerprints occur. The PCA
core plot showed some diverging clustering tendency compared to
CA. However, the dendrogram mainly confirmed what was  seen
n the PCA score plot.

Then, the antioxidant activities of the samples were modeled as
 function of the fingerprints using PLS and O-PLS. The peaks poten-
ially responsible for the antioxidant activity of the samples were
ndicated studying the regression coefficients of the models. In
his study, the regression coefficients plot of both models not only
howed similar coefficient profiles but also the coefficient peaks
inked to the compounds probably responsible for the antioxidant
ctivity can be indicated at the same positions. In a next step, the
ubstances from these relevant peaks should be isolated, identified,
nd further examined.
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